
Copyright © Murray Greenman ZL1BPU 2014-2020

1

ZL1BPU Synthesiser Script Format

16 April 2020 Rev 1.2.

This format is intended as a series of offset frequency and other related instructions sent to a

frequency synthesizer as a means of generating a pattern of symbols that can be read visually,

for example using ARGO. It has also been demonstrated that the technique can also be used

to send WSPR and mixed WSPR, CW and MT-Hell visual text messages.

Two groups of parameters are necessary for the definition of the symbols to be generated: the

fixed parameters, and the message script.

1. Fixed Parameters
These are the absolute (or centre) carrier frequency, the nominal or base symbol frequency

spacing, and the nominal or base symbol period. The message can either be repeated once

completed, or repeated with a specified delay. None of these parameters are defined in the

message script.

To some extent these fixed parameters may be synthesizer-specific.

nominal_frequency carrier frequency in Hz at the centre of the message

step_size carrier frequency unit step in Hz

nominal_period symbol period in seconds

nominal_frequency is that sent when script command ‘8’ is used. There are eight

incremental steps below this (7 – 0) and seven above (9 – F). All steps are the same size

(step_size or step_size x (n+1) if the Wn command is used).

nominal_frequency may be fractional, i.e. specified to a resolution smaller than 1 Hz. How

it is interpreted will depend on the synthesizer.

step_size may be fractional, and may also be negative. This allows the synthesizer to

generate inverted patterns for use on LSB bands with a USB exciter.

nominal_period is the duration of each individual tone (as defined in the script), and may

also be fractional. There will be synthesizer-specific limitations to the smallest value

permissible. For example with the FEI FE-56xx devices the minimum is about 0.5.

2. Message Script
The script defines the pattern to be sent, and consists of a file containing (typically) one line

of letters and numbers. Letters and numbers other than those listed below are to be ignored.

Once the end of the file is reached, the transmission has ended. Whether it starts again

immediately or after a time depends on the final command.

Some letters are script commands, and may be followed by a one-letter/number parameter.

Letters that can be interpreted as script commands, but do not (if required) have a correctly

interpretable following parameter, will be ignored.

Copyright © Murray Greenman ZL1BPU 2014-2020

2

2.1. Frequency Offset
The following letters and numbers are used to define an offset from the nominal_frequency:

0 Send nominal_frequency - 8 x step_size for the next period

1 ditto – 7 x

2 ditto – 6 x

3 ditto – 5 x

4 ditto – 4 x

5 ditto – 3 x

6 ditto – 2 x

7 ditto – 1 x

8 Send nominal frequency

9 Send nominal frequency + 1 x step_size for the next period

A ditto + 2 x

B ditto + 3 x

C ditto + 4 x

D ditto + 5 x

E ditto + 6 x

F ditto + 7 x

2.2 Other Script Commands
The following letters and parameters are used to control synthesizer behaviour:

Pn Power level. n = 0 – 4. P0 is the default, full power. Each step represents half amplitude output,

i.e. –6 dB. No symbol period is consumed. (The number of levels may be hardware dependent).

Q Quit sending (send zero frequency until timer expires, then start script again). Q (if used) is

always the last command in the script. Transmission is stopped (and PTT is dropped, if fitted)

when Q is reached, and is not activated again until the script restarts. One symbol period is

consumed. If the end of file is reached without a Q command, the transmission continues at the

start of the script.

Sn Period multiplier. N = 0 – 9, A – F. Nominal_period x (n+1) is used to time the duration of symbols

until the script starts again with the nominal_period or a further Sn command is found. S0 is the

default (one times nominal symbol period). No symbol period is consumed.

T Transmit. Causes the carrier to start on the last used frequency.

Wn Width, i.e. spacing of symbols. N = 0 – 9, A – F. The frequency shift value step_size is multiplied

by (n+1). The default value is W0. No symbol period is consumed. Not implemented in all

compatible equipment.

Vn Selects the VFO to be addressed by subsequent script commands. . Not implemented in all

compatible equipment. The value n is a single digit, typically 0 – 3.

X Send zero frequency for the next period, i.e. carrier stops. For synthesizers with PTT capability,

PTT is not dropped. For Fractional-N PLL synthesizers with this capability, the carrier is turned off.

For Fractional-N PLL synthesizers and others which can’t send zero frequency, nominal frequency

is sent and PTT is dropped. One symbol period is consumed.

2.3 Script Interpretation
Not all synthesizers need support all commands. The minimum command set interpreter must

(in addition to frequency offset 0-9, A-F) include Q and X commands.

When Q is met in a script, any following commands will be ignored. The PTT (if fitted) will

be dropped one symbol period following the last frequency command. This ensures that the

last symbol isn’t clipped.

Copyright © Murray Greenman ZL1BPU 2014-2020

3

When the script is started, PTT (if fitted) is activated one symbol period before the first

symbol is sent. This would have the same effect as the script starting with an X, and ensures

that the first symbol isn’t clipped.

When a script command is met which is not in the hardware specific command set, it will be

ignored. No symbol period will be consumed. Specifically, SPACE (ASCII 32), CR and LF

are ignored. Be aware that interpreters which do not support some commands should ideally

also ignore their following parameters (Pn, Sn, Vn, Wn).

When a command interpretation error occurs, such as a P, S or W command with no in-range

following parameter, this command will be ignored. No symbol period will be consumed.

3. Script Example
The following script:

4XC46C48C4AC4XCXX4684AC4XX4XXXX46B8ACXX468AC48C4XCXX468AC48C4XCX 23456463625X

2342564234X 3456789ABCD3456789ABCD3456789ABCDS264ACXA6CEXA6420XAXAXS0XQ

results in the following pattern, as received by ARGO:

Figure 1. ARGO reception of script example

Note how the Sn command is used to slow the symbol period by a factor of three for sending

the CASTLE segment. This (a) substantially reduces the number of commands in the script,

and (b) may result in a cleaner transmission, especially with fractional N synthesizers which

cannot preserve carrier phase at each new command.

Although not implemented in this example, the three ‘power stripes’ should be sent as:
P03456789ABCD P13456789ABCD P23456789ABCD P0

So that the second and third stripes are sent at –6 dB and –12 dB respectively.

4. Script Compiler
It is possible to use a Windows graphical program to create scripts to the above specification

using the approach of placing dots on a grid with a mouse. The program will save text files

which may be used with perhaps minor tweaking directly with any application that follows

this specification.

Tweaking may be required because the Windows program has slightly different command set

(it is intended for real-time use with a sound card and SSB transmitter). The compiler does at

least include the frequency offset (0 – 9, A – F), Pn, X and Q commands.

The recommended program is ZL2AFP MEPT Controller v1.09.
1

1
 Download from https://www.qsl.net/zl1bpu/SOFT/WYSMEPT.htm

Copyright © Murray Greenman ZL1BPU 2014-2020

4

Even if the compiler does not implement the full specification, it will certainly reduce the

effort involved in making good-looking ARGO images. The files can always be post-

tweaked manually, and probably always will.

4.1. Making Scripts
Figure 2 has an example of a script which incudes Sequential Multi-Tone Hell text (which

can be read directly on ARGO, exactly as in Figure 1), graphical elements and CASTLE

mode. It is easy enough to also (or instead) include plain carrier segments, OOK CW, FSK

CW, DFCW, more complex graphics, and even WSPR.

In Figure 2 the grid represents time intervals horizontally (typically one second units), and

frequency vertically (typically 1 Hz units). These values give reasonable results with

Sequential Multi-Tone Hell text on ARGO in QRSS3 mode.

Figure 2. Script example explanatory grid

Note how to the left of the grid the rows are labelled by their frequency number, and the

columns (time) have the pattern script listed under the corresponding column. The numbered

squares in the grid represent the transmitted dots, and are labelled with their frequency

number.

The lowest row (with grey ‘X’s) represents columns where there are no dots. In the

corresponding script there is of course an ‘X’.

4.2 Sequential MT-Hell
This is the most difficult mode to represent visually. This is because in any single time slot,

there can only ever be one symbol, and this considerably restricts the shape of characters.

Some letters and numbers are particularly difficult to render in an appealing and easily

recognisable way, for example ‘Q’, and often dots need to be left out, or spaces added, in

order to improve the overall appearance and readability. Using a script compiler will ease

this problem, but final results should always be checked with ARGO. Making good-looking

MT-Hell scripts is undoubtedly an art form!

MT-Hell also has about 4dB disadvantage over most QRSS modes, because the dot length is

shorter than the sample interval of ARGO. However, the results are undeniably readable!

Copyright © Murray Greenman ZL1BPU 2014-2020

5

It is also important to, as much as possible, preserve the even vertical and horizontal spacing

of dots. If dots are too close, that segment of the character will look too bright, and if not

spaced correctly the character shape may be difficult to recognise. The best test is how well

the resulting script looks on ARGO when the signal is weak.

Look at the letter ‘Z’ in the top row of Figure 2. Here there are blank columns (‘X’) at the

beginning and the end in order to preserve the horizontal spacing. If the character was

rendered ‘4C46C48C4AC4C’, the bottom left and top right would look bunched up and

possibly brighter.

Some characters require horizontal dots at times where there isn’t an opportunity, such as

during a vertical stroke, which can consume five columns. The answer is simply to drop a

horizontal dot in-between the verticals – it will hardly be noticed. There is an example of this

in the letter ‘L’ and again in the ‘1’ (Figure 2). In the case of the ‘1’ a serif is dropped in, and

the result is very pleasing (see Figure 1).

Some characters require ‘X’s in order to preserve proper horizontal dot spacing. Where there

are no other dots to place, an ‘X’ is used. Such an example is the horizontal part of the letter

‘L’, where two blank columns are used before the final horizontal dot. In general horizontal

row dot spacing should be kept at three dot intervals. The letters ‘E’ and ‘b’ don’t fit this

rule. It’s all about making the best compromise. Lower case letters are especially difficult to

render appropriately.

The letter ‘R’ in the example illustrates how dots can be missed and yet the eye still

recognises the character. In this case there should really be a further ‘6’ about where the last

‘A’ is in the letter ‘R’. To include the dot would make the letter misshapen, and yet without

the dot the character is quite recognisable. It’s all about art!

Avoid lower case letters as much as possible, as they are especially difficult to render. Also,

only use characters (upper or lower case) five dots high – any higher will result in text that is

stretched excessively in the horizontal direction, while fewer vertical dots will make it

impossible to render characters recognisably.

Characters look best when the dots are spaced two rows apart vertically and three rows apart

horizontally. This is simply a quirk of ARGO. Rather than specify 2 Hz frequency spacing

for characters and send ‘6789A’, we use 1 Hz spacing and send ‘468AC’, i.e. every other

row. There is an important advantage, as in-between dot rows can be used to better render

characters (see the serif example in the ‘1’). This is a very important tool for rounded letters

such as ‘O’ and ‘Q’. This also allows for finer detail in simple graphics, such as the diagonal

lines in Figure 1.

Copyright © Murray Greenman ZL1BPU 2014-2020

6

4.3. CASTLE and other Morse
These modes are conventionally sent with three-second dots, as this gives best sensitivity on

ARGO in QRSS3 mode. Rather than specify the dot period to be three seconds (which is

perfectly OK), in a mixed-mode message such as the example in Figure 2, the S2 command

is used to temporarily stretch the elements out to three seconds (n+1). This reduces the

number of characters in the script considerably, and more importantly, prevents unsightly

keying transients in the middle of the elements, which can occur when using fractional-N

synthesizers which do not preserve carrier phase between frequency changes.

On-Off Keyed (OOK) Morse should be avoided, as it is very difficult to read on ARGO

when signals are noisy. It is better to use FSK Morse with say 5 Hz shift. FSK also works

best with synthesizers you can’t turn off, or amplifiers which can’t tolerate loss of drive.

DFSK (also known erroneously as DFCW) is more compact but harder to read. The best

Morse option is CASTLE, as illustrated in Figure 2. This is the most compact format, and

while a little wider than other Morse modes, is much the fastest for a given element length,

and is distinctive and arguably still quite readable.

Copyright © Murray Greenman ZL1BPU 2014-2020

7

4.4 WSPR
This is perhaps the most challenging mode to send using a script interpreter, but it is very

effective, and can also be used in mixed-mode transmissions. The actual procedure for

generating WSPR code is beyond the remit of this document, but the process is outlined here.

The first step is to set up the Windows WSPR software with the necessary message (e.g.

ZL1EE RF72 20 dBmW). Then use the WSPR program command line options to store the

message as a series of tone numbers. Converting these to script dots is an ugly process, and

best achieved by writing a small program to extract the symbols and convert them to script

values.

Always place the WSPR segment at the start of a multi-mode message, as that makes timing

the start of transmission much easier (yes, you will have to time the start manually). Set the

symbol spacing (step_size) to 1.4648 Hz and the symbol speed (nominal_period) to 0.682687

seconds. The message for other modes may need to be adapted slightly to match the unusual

WSPR spacing and period.

Figure 3VK2DAG receiving WSPR/MT-Hell multi-mode from ZL1EE on 475 kHz

The example in Figure 3 was also decoded successfully with WSPR, and the text could be

seen on the WSPR waterfall!

Murray Greenman

16 Apr 2020

